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Forging is a complex nonlinear process that is vulnerable to various manufacturing anomalies, such as
variations in billet geometry, billet/die temperatures, material properties, and workpiece and forging
equipment positional errors. A combination of these uncertainties could induce heavy manufacturing losses
through premature die failure, final part geometric distortion, and reduced productivity. Identifying,
quantifying, and controlling the uncertainties will reduce variability risk in a manufacturing environment,
which will minimize the overall production cost. In this article, various uncertainties that affect the forging
process are identified, and their cumulative effect on the forging tool life is evaluated. Because the forging
process simulation is time-consuming, a response surface model is used to reduce computation time by
establishing a relationship between the process performance and the critical process variables. A robust
design methodology is developed by incorporating reliability-based optimization techniques to obtain
sound forging components. A case study of an automotive-component forging-process design is presented
to demonstrate the applicability of the method.
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1. Introduction

This research begins by exploring the possible sources of
uncertainties in the hot-forging process. A brief description of
the various sources of uncertain parameters in the forging pro-
cess is provided. A robust design methodology is developed
that considers the randomness in the process parameters. Un-
certainty Quantification (UQ) and Reliability-Based Optimiza-
tion (RBO) are the two tools that are used in a robust design
method. The effectiveness of the proposed methodologies is
demonstrated with applications to automotive and aerospace
components. Furthermore, this research opens a new era for
incorporating uncertainty analysis in the conventional forging
process design to improve product quality and reliability, and
to reduce the total manufacturing cost.

Many complex industrial and military components, as well
as many consumer goods, are produced through forging pro-
cesses. Forging is a plastic deformation process in which a
simple cylindrical shape, either hot or cold, is transformed
through a number of stages to a predetermined shape, primarily
by compressive forces exerted by dies (Ref 1). In recent years,
the forging industry has become an increasingly competitive
global marketplace. As such, customers in this industry have
placed considerable pressure on the manufacturers to decrease
development and production costs. Fewer physical prototypes
and shorter development times lead to a less costly design
process. Increased tool/die life decreases the number of work

stops in the production, thereby reducing the overall production
costs; these costs can quickly become significant over large
production lots or when working with expensive materials.
Tool or die life in the forging operation is dependent on three
criteria: the mechanical properties of the die material, process
variables, and the operating conditions. One way to improve
tool life is to reduce the load on the tool by modifying the
forging process, tool design, preform design, or forging stages.

Yoshinari (Ref 2) discussed the causes for tooling damage
and the steps that are required to improve die life. According to
Yoshinari, damage to the die occurs through surface adhesion,
and plastic deformation, wear, or breakage. Lubrication type,
material properties, die/material interface conditions, forging
loads, thermal loads, and process conditions can help to predict
the die damage state. Better lubrication and process conditions,
and the reduction of forging loads will improve die life. In a
conventional design, all of the forging process parameters are
considered to be deterministic and constant. However, there is
always some uncertainty involved in forging process variables.
These variables include material properties, process, and envi-
ronmental conditions. A combination of these uncertainties
could induce heavy manufacturing losses through premature
die failure, final-part geometric distortion, and production risk.
Identifying the sources of uncertainties, and then quantifying
and controlling them, reduces risk in the manufacturing envi-
ronment and minimizes the overall cost of production.

Generally, uncertain parameter information can be obtained
either as sparse data points, intervals, expert opinions, or as
probability distributions. Uncertainties in the forging processes
come from both quantitative and qualitative sources. Quanti-
tative or noncognitive sources are related to randomness in
physical observations, which come from process condition
variations, such as randomness in friction, stroke length, and
billet temperature. Qualitative or cognitive sources are related
to the skill or experience of the operator and the conditions of
the machinery. Depending on the nature of the sources, the
uncertainties in forging can be classified into four categories,
as shown in Fig. 1. They are:
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• Preform-based uncertainties
• Material-based uncertainties
• Process and model parameter uncertainties
• Other miscellaneous uncertainties

1.1 Preform-Based Uncertainties

These uncertainties include variations related to the preform
such as variations in preform geometry, heating times in the
furnace, temperature profiles, transfer times from the furnace to
the die, and alignments.

1.2 Material-Based Uncertainties

These uncertainties consist of variations in the workpiece
and die material compositions, microstructure, elastic, plastic,
and thermal properties.

1.3 Process and Model Parameter Uncertainties

These uncertainties include variations in process and model
parameters, such as friction coefficients at the interface, heat
transfer rates, and stroke length, due to the repetitive use of
lubrication, inconsistent cooling rates, and machinery fatigue
conditions. These uncertainties also arise from variations in the
lubrication system (i.e., spray angle, time, pattern, and the
speed).

1.4 Other Miscellaneous Uncertainties

Some of the other miscellaneous uncertainties include errors
in tooling assembly, human intervention, and environmental
conditions.

Reliability and durability depend on the process perfor-
mance in the presence of these uncertainties. In conventional
design, the effect of these uncertainties is considered by em-

pirical safety factors. These safety factors were derived based
on experience but do not guarantee safety or optimum perfor-
mance. Hence, these designs are susceptible to risks, such as
premature die failure, incomplete die fill, and reduced product
quality. Therefore, in this research, an attempt is made to quan-
tify these parameter uncertainties. UQ and RBO are the tools
that are used to quantify the uncertainties in producing designs
that meet safety requirements. The optimization techniques that
are developed in this research help to design robust processes
more economically and more quickly than traditional ap-
proaches.

2. Robust Design Methodology

A process that is insensitive to noise in variables is de-
scribed as being robust. For instance, a manufacturing process
may exist to make a product (e.g., metal wheels), but, despite
best efforts, the product quality varies widely. This variation
occurs due to process parameters such as friction (due to the
repeated use of a lubricant), initial billet temperature (due to
heat transfer that occurs in transferring the billet to dies from
the furnace), die velocity, and stroke length (due to machine
backlash errors.) Rather than tightening up tolerances on the
process parameters, it may be advantageous to adjust the level
of design parameters to reduce random parameter sensitivity
(i.e., robust design under uncertainties). This way a product or
process is achieved that is not only of a high quality, but gives
consistently high quality.

Robust design methodology (Fig. 2) of the forging process
consists of the following steps: screening critical variables,
evaluating the sources of uncertainties and their probability
distributions, UQ through variability, reliability-assessment
methods, and RBO.

The forging process reliability and outcome depend on a
number of parameters such as initial billet temperature, friction

Fig. 1 Sources of uncertainties in forging process
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factor, die temperature, stroke length, and die velocity. Among
these parameters, the critical ones have to be identified, which
is done using design-of-experiments (DOE) techniques. A re-
sponse surface model (RSM) is generated and used to represent
the process behavior. Variation in the process response is es-
timated by applying Monte Carlo simulations (MCSs) on the
RSM. Cumulative distribution functions (CDFs) are generated
to represent system variability. Process reliability is evaluated
by estimating the probability of failure and the reliability index
(RI) of the behavior. To make the process robust, parameter
uncertainties are considered in the design by applying reliabil-
ity constraints through RBO.

3. Example Case Study

An axisymmetric metal wheel having an H-cross section
(Fig. 3a) is considered for the case study. The disk is axisym-
metric with rib height H and rib width B, as shown in the
finite-element model in Fig. 3(b). The complexity of the forg-
ing process increases with the H/B ratio. In this example, the
ratio is taken as 1. A horizontal symmetry is assumed; hence,
a quarter model and only the top die are considered for further
analysis.

Today, sophisticated tools are available to simulate the total
forging process. A finite-element analysis package, DEFORM
2D (Ref 3), is used to simulate the hot-forging process and to
predict the forging loads, metal flow, and deformation patterns.
In most hot-forging processes, the requirements are to improve
the tool life and the product quality by reducing the forging
load and by designing an economical and robust process. In
this study, the forging process using a mechanical press is
considered. For this process, the ram speed is much higher
compared with the ram speed of the hydraulic press; therefore,
the heat generation due to the deformation is high. It increases
the temperature at the center of the billet by 100 to 150 °C.
However, for the die/billet interface, this effect is offset by the
die-chilling effect. Therefore, for the contact boundary surface,
the dominant factor is the heat conduction between the billet
and the die. Because the die temperature is much lower than
that of the billet, the heat loss due to the conduction between
these two bodies is very large, and there exists a severe tem-

perature gradient. The boundary temperature of the billet is
reduced by about 200 °C due to the die-chilling effect. This
causes a large temperature variation between the center of
the billet and the die contact boundary of the billet. Therefore,
in this study, temperature effects are considered by conduct-
ing a nonisothermal forging simulation of an axisymmetric
H-cross-section wheel. Because the forging process is noniso-
thermal, there exists a temperature variance on the die sur-
face. Forging dies are usually heated to temperatures as high
as 250 to 400 °C to reduce die chilling. The effective strain-rate
is directly dependent on the nodal velocities. Therefore, it is
an instantaneous variable and can be directly influenced by
the die velocity. Hence, die velocity is taken as one of the
variables.

In a hot-forging process, the billet is heated in the tempera-
ture range of 925 to 1300 °C in the furnace and then transferred
to the forging dies. In the process of transference, the heat-
transfer flow occurs from the billet to the atmosphere. As a
result, the effective temperature of the billet varies from the
furnace temperature. This variation is not constant for all of the
parts. Furthermore, it has a strong effect on the microstructure/
service properties of the product. Therefore, the billet tempera-
ture is considered to be one of the random parameters.

One of the other important random variables is the friction
factor. Variations in the friction factor arise due to the repeti-
tive use of lubrication and from lubrication system conditions.
Additionally, variations occur in the stroke length and die ve-
locity due to the existence of any backlash errors in the tooling
assembly, or due to errors in the operating equipment. These
variations determine the final dimensional accuracies and re-
jection rates. Ambient temperature variations can cause varia-
tions in the heat-transfer rates of forging billets and dies,
thereby affecting the final product quality. Hence, these pa-
rameters are considered as random parameters for further forg-
ing process optimization. Among all of these uncertainties, the
forging load is sensitive to only some of the variables. These
are the critical random variables to the forging load, and they
have to be identified through screening methods.

3.1. Screening the Variables

Factorial screening methods are used to identify the contri-
bution of each random parameter to the response of the system
(Ref 4). Because this research focuses on the forging load, six
input variables that affect the forging load are identified. They
are: initial billet and die temperatures, die velocity, friction
factor, stroke length, and environmental temperature. The sen-
sitivity of each parameter for the response is analyzed through
analysis of variance (ANOVA) (Ref 5) and DOE analysis.
Using a two-level fractional factorial DOE, the simulation
points are generated. The forging load for each DOE design
point is computed, and the main effect of each process param-
eter is evaluated. Together, the analyses yield a Pareto plot
(Fig. 4), which enables the identification of the variables that
significantly affect the forging load.

From the Pareto plot, it is shown that the billet temperature
and the friction factor together contribute 70% of the overall
response to the forging load. Thus, these two variables are
considered in the evaluation of the variability and reliability of
the process. Die velocity and stroke length are the other sig-

Fig. 2 Robust design methodology
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nificant random parameters, which are also considered in the
forging process design. RSM is generated in terms of these two
critical variables, while fixing the remaining variables at some
likely values.

3.2. Response Surface Model

Once the critical parameters are screened, an RSM is gen-
erated to represent the process response (Ref 6). RSM is a

polynomial used to represent an empirical relationship between
the response of the system and the critical design parameters.
This is used when there is no explicit relationship between
design variables and responses or when such relationships are
complicated. It filters the numerical noise present in the analy-
sis. The polynomial coefficients are estimated by using the
method of least squares, which consists of minimizing the sum
of squares of the differences between responses and their ex-
pected values. The responses are computed at design points.

Fig. 4 Pareto plot for forging load

Fig. 3 (a) Axisymmetric wheel. (b) One-quarter finite-element model
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These design points are selected using the DOE factorial meth-
ods. Among all of the factorial methods, the central composite
design (CCD) method offers a satisfactory alternative to a full
factorial design.

A CCD (Fig. 5) contains an embedded factorial or fractional
factorial design with center points that are augmented with a
group of “star points,” which allow estimation of the curvature
behavior of the system performance (Ref 3), and the quadratic
terms are efficiently estimated through the axial points. Hence,
this method is used for selecting the design points in this study.
The total number of simulations required for the CCD method
is 2k + 2k + N, where k is the number of parameters and N is
the number of center points. The quadratic polynomial is con-
structed for the system performance, and mathematically it is
written as:

ŷ = �̂0 + �
i=1

k

�̂ii xi
2 + �

i=1

k

�
j�i�j�

k

�̂ij x i xj (Eq 1)

where �i are the regression coefficients for the linear terms, �ii

are the coefficients for pure quadratic terms, �ij are the coef-
ficients for the cross-product terms, xi, and xj are random pa-
rameters, and xixj denotes interactions between two random
parameters.

The development of the surrogate model avoids repetitive
finite-element simulations for studying the uncertain behavior.
Using this RSM, the approximate response variability is cal-
culated for variations in random parameters.

3.3. Variability Assessment

The uncertainties associated with the process are usually
accounted for in the form of variability distributions for ran-
dom-process variables. In principle, the distributions for these
random variables could be, for example, uniform, normal, log-

normal, or Weibull. However, the selection of a particular type
of probability distribution depends on a number of factors:

• Available format of the data
• The nature of the problem
• The underlying assumptions associated with the distribu-

tion
• Convenience and simplicity for further computations

The normal distribution is the most commonly used dis-
tribution for the random variables. Hence, the normal distri-
bution is assigned for the random variables in this research.
A brief background of the normal distribution is provided
here.

3.3.1 Normal Distribution. The normal distribution (also
known as the Gaussian distribution) is a symmetric and bell-
shaped density curve for a random parameter. The normal dis-
tribution is characterized by two parameters: the mean, �; and
the standard deviation, �. The mean is a measure of center, and
the standard deviation is a measure of spread. The normal
probability density function (PDF) of the normal distribution of
a random parameter is shown in Fig. 6, where the random
variable x can take any value from −� to +�.

A probability distribution is defined for each one of the
random variables. The cumulative effect of all these distribu-
tions causes the overall probability distribution of the response
function. After the RSM is developed for the process perfor-
mance, or objective, the effect of uncertain variables can be
incorporated into the model through the use of MCS. MCS is,
effectively, a random number generator that creates values for
each uncertain parameter. Values are chosen within the limits
for each variable and with a frequency that is proportional to
the shape of the probability distribution associated with each
variable. The uncertain variables, billet temperature and fric-
tion factor, are assigned with a probability distribution within
their limits used in the RSM. Variability assessment is done for
each of these distributions. In a practical manufacturing pro-
cess, the uncertain variables could have a correlation between
them (e.g., billet temperature variations affect the film thick-
ness of lubrication, which affects the friction factor at the in-
terface). The correlation among these uncertain variables can
be defined with the help of a correlation coefficient (CC). A
CC is a number between 0 and 1. If there is no relationship
between the variables, the CC is 0 or very low. As the strength
of the relationship increases, the CC also increases. If they have
a strong relationship, that is, if they are dependent on each
other, the CC is 1. In the forging operation, the relationships
among the variables are uncertain. Hence, the process variabil-
ity is assessed for normally distributed random variables with
different levels of CCs, starting from CC � 0.

3.3.2 Response Variability. In this case, randomness of
the input random variables is assumed as a normal distribution
with a zero mean and 10% variance. Normally distributed ran-
dom numbers are generated using MCS. Using RSM, the forg-
ing load variability is computed for different levels of correla-
tions of the normally distributed parameters. The response
variation follows a normal distribution with different means
and variances for different correlation levels of random vari-
ables. A CDF is obtained by integrating the area under the
PDF. A CDF is defined as the probability that the variable

Fig. 5 Central composite design
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takes a value less than or equal to xlimit. For a continuous
function, this can be expressed as:

F = �−�

xlimit
f�x�dx (Eq 2)

where f(x) is the PDF.
The response CDFs for different correlation levels are plot-

ted in Fig. 7. The y-axis represents the probability, and the
x-axis is the allowable domain for the given probability func-
tion. The forging load corresponding to a cumulative probabil-
ity of 0.5 represents the mean value of the forging load. The
mean forging load is almost the same for all of the CC values,
but the shape varies (Fig. 7). This means that the distribution
varies with the correlation level. The CDF curve is skewed
toward the right as the correlation among random variables
decreases. The solid line indicates a completely independent
case, which occupies a wider range of the response and has a
large variance in the response. For all other correlation levels,
this range, which shows a steeper distribution with less vari-
ance, is small. The straight dotted line in Fig. 7 represents the
limit load in forging. The region to the right of the limit load is
the failure region, and the region to the left is the safe region.
Thus, process reliability is obtained from the cumulative prob-
ability of the response in safe region (Fig. 8). The reliability
estimation method from the response variation and limit load is
explained briefly in the following section.

3.4. Reliability Assessment

Process reliability is the probability that a system can per-
form its intended function for a specified interval under speci-
fied conditions. Generally, reliability analysis uses the limit-
state function to evaluate the probability of process failure by
determining whether the limit-state functions are greater or less
than zero. One of the common limit-state functions in forging
is the load function (Fig. 8), which can be written as:

g�x� = limit load − actual load (Eq 3)

Here the forging load is an RSM, a function of random param-
eters. The limit-state function g(x) � 0 is the boundary be-
tween safe and unsafe processes (Ref 7). The failure of the
process occurs if the actual load exceeds the press limit load.
Hence, probability of failure (Pf) is defined as:

Pf = P�g�x� � 0� (Eq 4)

It is computed as the integration of the joint PDF over the
failure region. Pf can also be mentioned with the use of a
standard normal CDF as follows:

Pf = ���� (Eq 5)

where � is the standard normal cumulative density function
and � is the RI. � is the minimum distance from the origin to
the design point on the limit-state surface, as shown in Fig. 8.
It defines the number of standard deviations from the mean
point accounted for in the failure probability prediction. This
minimum distance point is called the most probable failure

Fig. 6 Normal distribution Fig. 7 CDF for forging load at different correlation coefficients
(CCs)

Fig. 8 Reliability index
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point (MPP). The MPP represents the worst combination of
stochastic variables with the highest probability of failure.

It is apparent from the above definition of reliability that if
the failure line, or limit-state line, is closer to the origin, the
failure region is larger, and if it is farther away from the origin,
the failure region is smaller. Thus, the position of the limit-state
surface relative to the origin is a measure of the reliability of
the process under assumed parameter distributions. In practice,
the size of the random variables can be very large, and their
distributions may vary as uniform, normal, Weibull, or extreme
value distributions. The limit-state surface changes its position
and shape due to changes in input random variables distribution
and their correlation. Therefore, there exist different failure
regions for each of the distributions. Hence, the probability of
failures (Pf) and the RIs are computed for normal distribution
with different levels of correlation factors, as shown in Table 1,
to explore the design space.

It is observed from the above results (Table 1) that Pf de-
creases as the correlation between the variables increases for
normally distributed random variables. That means that as the
correlation increases, the limit surface is moved away from the
origin, thereby shifting the forging load away from the limit
load. Hence, the reliability of the process, or the forging tool
life, increases. However, these results are not unique. In prac-
tice, the correlation levels among the variables and their un-
certainty distribution are unknown and are greatly problem-
dependent. Therefore, these results provide a guideline for a
reliability analysis and an optimization of the forging process.
From this study, it is apparent that the independent random
variables are the worst design situation to consider in the forg-
ing optimization. Hence, in further optimization, all the random
variables are assumed to be independent in nature. In general,
the number of random parameters is not limited to two. There-
fore, in the following sections, the forging process optimization
is carried out with all four critical random variables: initial
billet temperature, friction factor, forging die velocity, and
stroke length.

4. Design Optimization

Design optimization is a tool that is applied in the forging
process to obtain, for example, the minimum forging load,
power consumption, strain variance, or scrap (Ref 8). There has
been considerable work done in forging optimization (Ref
9-11) in which the process simulations were based on the de-
terministic information of various variables. A deterministic-
based optimization (DBO) solution does not consider variabil-

ity, and, as a result, the design solution may be risky or overly
conservative. Therefore, there is a need to use an RBO to
increase the process robustness. An RSM is used in the opti-
mization of the forging process under uncertainty. To date,
there has been no literature found on RBO application for the
metal-forging process. However, RBO techniques have been
widely used in structural optimization (Ref 12). In this re-
search, the reliability analysis is extended to nonlinear metal-
forging processes. The developed methodology is applied to an
axisymmetric metal wheel-forging optimization. Additionally,
the relative advantages of the RBO over the DBO are pre-
sented.

4.1. Deterministic-Based Optimization

It is important to control the material flow behavior during
the forging to ensure the uniformity of deformation and to
complete die filling. Furthermore, the control of strains and
strain variance in the deformed product helps in the develop-
ment of “favorable” mechanical and microstructural properties.
This goal can be achieved by optimizing the initial billet tem-
perature, friction factor, forging die velocity, and stroke length.
Constraints are placed on the underfill to ensure complete die-
fill with no defects and on the forging load. The uniformity of
deformation is always a critical factor in the quality of the final
product and in the distribution of properties through the mate-
rial being deformed. The effective strain variance is thus cho-
sen as the objective function. The response surface approach is
used to approximate the objective function and constraints. In
the most generic sense, the deterministic optimization problem
can be stated mathematically as:

Objective: minimize effective strain variance �var:f(xi)

Subject to: g1(xi) � 0 i.e., underfill � 0
g2(xi) � 0 i.e., forging load � allowable forging load

Design variables: xi � 1,2,3,4

where x1 is the initial billet temperature, x2 is the friction factor,
x3 is the die velocity, and x4 is the stroke length. The normal-
ized side bounds on design variables are −1 � xi �1, which are
determined based on the process requirements and the forge
press capacities. Here, �var is the weighted effective strain vari-
ance in the billet given by:

�var =
�
i=1

n

Ai��i − �avg�
2

�
i=1

n

Ai

(Eq 6)

where Ai is elemental area, n is the total number of elements,
and �avg is the average strain in the workpiece, which is given
by:

�avg =
�
i=1

n

Ai�i

�
i=1

n

Ai

(Eq 7)

Table 1 Pf and RI for different correlation levels of
normal random parameters

Distribution
Correlation

coefficient (CC)

Probability
of failure

(Pf)
Reliability
index (RI)

Normal 0.0 0.1310 1.125
0.3 0.0849 1.379
0.6 0.0415 1.736
0.9 0.0191 2.073
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Here, xi design variables are considered as deterministic values,
and f(x) and g(x) are the quadratic polynomial approximations
in terms of the design variables xi. The objective function and
constraints surrogate models are used in the design optimiza-
tion toolbox. By optimizing the forging variables, in addition to
minimizing the effective strain variance, complete die fill and
forging load is maintained at less than the limit load. For non-
linear problems such as forging, the solution is dependent to
some extent upon the “initial guess” vector. In this work, dif-
ferent varieties of guess vectors are tried, and the optimum
value is given in Table 2.

4.2. Reliability-Based Optimization

In traditional deterministic optimization, the inherent vari-
ability present in the design variables and other variables is not
considered. Due to inherent variability, the realized optimum
design might be susceptible to a high probability of failure (Ref
13). In a reliability analysis, a constraint equation is written as
a limit-state function g(x), where g(x) � forging load − allow-
able load. Due to the uncertainties in the design variables, g(x)
is a random variable itself. As a result of uncertainties, it is not
certain whether g(x) falls into the safe region or the failure
region for an arbitrary value of variables. Therefore, the reli-
ability measure Pf is used as a constraint. In this optimization
problem, the forging load is taken as the random performance.
Therefore, the Pf for the forging load is written as follows
(Eq 4):

Pf = P�g�x� � 0�

A surrogate RSM model is used to fit the structural response
in terms of random variables for RBO. An MCS is used to
determine the failure probability of the process on the RSM. In
practice, it is difficult to construct individual probability func-
tions due to the scarcity of statistical data. Hence, an approxi-
mate normal distribution with 10% variance is assumed for the
random variables, and a probability analysis is used. To obtain
the optimum mean values of random variables, an optimization
problem is formulated. In addition to a reliability constraint on
the forging load, a deterministic constraint is placed on the
underfill. The effective strain variance is the objective function
the same as in the DBO. Unlike in DBO, objective and con-
straints functions are RSMs in terms of parameter distribution
means. Mathematically, the reliability optimization problem
can be written as:

Objective: Minimize effective strain variance �var: f(�xi)

Subject to:
Deterministic constraint: g1(�xi) � 0 i.e., underfill � 0

Reliability constraint: Pf � Plimit (Pf due to forging load �
0.0001)

Design Variables: �xi i � 1,2,3,4

where �x1 is the mean value of initial billet temperature, �x2 is
the mean value of friction factor, �x3 is the mean value of die
velocity, and �x4 is the mean value of stroke length. The nor-
malized side bounds on mean values of design variables are −1
� �xi � 1, which are determined based on the process require-
ments and the capacity of the forge presses. Here, �var is the
weighted strain variance, and g1(x) is the deterministic con-
straint on the underfill in the billet, approximated in terms of
the distribution mean values of the variables. The Pf of the
forging process due to forging load is computed by using MCS
on RSM.

In RBO, the optimizer checks the reliability constraints for
every design parameter mean value and finds a feasible direc-
tion. RBO provides an optimized design solution for a desired
reliable criterion. DBO and RBO design solutions are shown in
Table 2.

It can be seen from the results that the optimum points are
quite different in DBO and RBO. The optimum initial billet
temperature (1260.2 °C) and friction factor (0.4) in DBO are
higher than the RBO optimum temperature (1078.5 °C) and
friction factor (0.3). The RBO optimum die velocity is higher
than the DBO optimum die velocity. The RBO optimum stroke
length is 0.5 mm less than the DBO stroke length, and this
ensures a complete die fill, along with a reduction in the forg-
ing load even in the presence of variations. Various process
performance variables are computed for both optimum designs
and are tabulated in Table 3.

The RBO optimum design simulation gives higher effective
strain and strain-rate variances, which implies that the RBO
optimum design provides a lesser uniform material flow than
the DBO solution. RBO also gives higher maximum strain and
maximum strain rate values. However, the load for the RBO
optimum design is reduced by 20% compared with the DBO.
The reduction in forging load on the dies reduces the thermal
and mechanical stresses in forging dies, and, therefore, im-
proves the die life. The reduction in the energy required for the
forging process facilitates the product to manufacture at lower
press capacity, which in turn leads to a reduction in machinery
investment cost.

However, these optimum designs may be subject to varia-
tions. Hence, a normal distribution with 10% variance is as-
sumed at the mean optimum design, and the process reliability
is then computed. By performing a probability analysis at the
obtained DBO and RBO optimum points, a CDF plot for forg-

Table 2 DBO and RBO design solutions

Design parameters, xi Initial design DBO RBO

Billet temperature, °C 1150.0 1260.2 1078.5
Friction factor 0.55 0.37 (≅0.4) 0.35 (≅0.3)
Die velocity, mm/s 212.3 154.5 163.2
Stroke length, mm 67.0 66.8 66.3

Table 3 DBO and RBO results

Criterion DBO RBO

Strain variance 0.162 0.252
Maximum strain 4.721 6.732
Strain-rate variance 977.5 3604.6
Maximum strain-rate 443.8 4174.6
Load, tons 2065.2 1639.4
Probability of failure 55.0 × 10−4 0.8 × 10−4
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ing load is generated. This plot is shown in Fig. 9. This CDF
plot can be used to directly read the probability of failure of the
forging process.

By performing an MCS on the limit state (i.e., the forging
load) at DBO and RBO designs, the probability of failure is
equal to 0.0055 and 0.00008, respectively (Table 3). The DBO
case demonstrates that for every 10,000 parts produced, 55 of
them will exceed the limit load. For the RBO case, only about
1 part in 10,000 will exceed the forging load.

From the plot (Fig. 9), it can be seen that the robust design
solution of an RBO always yields a lower level of risk for the
same randomness in the design variables. As a result, the op-
timum solution corresponds to a shift in the forging load dis-
tribution, which is to the left for both the PDF and the CDF.

From Fig. 9, the reduction in the performance variation can
be seen for the RBO solution (dotted-line distribution). The
most likely, or mean value, of the forging load is reduced from
1.5 × 107 to 1.1 × 107 N. At the forging load 1.2 × 107 N, the
cumulative probability in the deterministic case is 0.06, while
it is 0.79 in the probabilistic case. This shows that 6% of the
deterministic outcomes are less than, or equal to, the forging
load (1.2 × 107 N). The remaining 94% of outcomes exceed
this load (i.e., 1.2 × 107 N), whereas in the probabilistic case
21% of the outcomes exceed this value. This illustrates that the
RBO solution moves the response away from the limit load
line. Therefore, the risk due to exceeding the forging load is
lowered, thereby increasing the process reliability and improv-
ing the die life.

5. Summary Remarks

This research focuses on developing nontraditional design
concepts based on probabilistic analysis and UQ techniques.
The important aspects are the identification of critical random
variables and their distribution. Various random variables in
the forging process are evaluated using ANOVA and DOE
screening methods. Critical random variables are assigned to
normal distributions. A robust design methodology is devel-
oped by incorporating the randomness of random variables.

This allows the quantification of uncertainties and leads to
estimating the variability of the process.

This methodology is implemented on a generic axisymmet-
ric H-cross-section metal wheel and can be adopted for any
other forging operations. The optimization problem is solved to
minimize the effective strain variance, while the forging load is
used as a reliability constraint. The reliability-based optimum
solution provides more strain variation and reduces the forging
load. However, the cost savings due to the reductions in the
forging load and energy are significant compared with the in-
creased cost due to material flow. Moreover, reduced load in
the RBO solution significantly reduces the probability of fail-
ure for the process. Therefore, this RBO reduces the manufac-
turing risk and improves the product quality. It also gives a
more robust optimum point than the deterministic solution
based on the selected reliability criterion. Additionally, if the
forging process is designed by considering the uncertainties,
then fluctuations in tooling loads can be greatly reduced,
thereby improving the tool life.
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